
Nadine Documentation
Release 1.8.2

Jacob Sayles

Jun 21, 2017

Getting Started

1 License & Copyright 3

2 Indices and tables 5

i

ii

Nadine Documentation, Release 1.8.2

Nadine is a Django web project which runs behind the scenes of coworking spaces.

Nadine has four applications: Members, Staff, Admin, and Tablet. These applications help your management team
facilitate your coworking community.

Getting Started 1

Nadine Documentation, Release 1.8.2

2 Getting Started

CHAPTER 1

License & Copyright

Copyright 2017 Office Nomads LLC. Licensed under the Apache License, Version 2.0 (the “License”); you may not
use this file except in compliance with the License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under the License.

3

http://www.officenomads.com/
http://www.apache.org/licenses/LICENSE-2.0

Nadine Documentation, Release 1.8.2

4 Chapter 1. License & Copyright

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

2.1 Requirements

• Python 2.7

• Virtualenv (Virtual environment)

• Homebrew if you are on Mac OS X (http://brew.sh)

• Postgresql

Important: Do not use SQLite.

2.1.1 Base System Installation

On Mac OS X

$ git # If you have not installed it, this will prompt you to download it.
$ brew update
$ brew install postgres python cairo pango
$ pip install virtualenv

On Ubuntu/Debian

$ sudo apt-get update
$ sudo apt-get install postgresql postgresql-server-dev-all python-pip python-dev
→˓virtualenv libffi-dev git cairo pango

5

http://brew.sh

Nadine Documentation, Release 1.8.2

Once that is ready, you can start the quickstart

2.2 Quickstart

Install the required systems

Setup the database

$ sudo su postgres -c "createuser -s $(whoami)"
$ createdb nadinedb

Create a virtual environment for the python project

$ virtualenv nadine
$ cd nadine
$ source bin/activate

Download the nadine source code from Github

$ git clone https://github.com/nadineproject.nadine.github
$ cd nadine

Install all the requirements

$ pip install -r requirements.txt

Run these scripts to setup nadine, install the database, and create your admin user

$./manage.py setup
$./manage.py migrate
$./manage.py createsuperuser

At this point you can run the server

$./manage.py runserver

Visit your installation of Nadine at http://127.0.0.1:8000/

2.3 Changing Application Settings

More information coming soon. If you need this information immediately, please file a GitHub issue.

2.4 Nadine Structure

2.4.1 Overview

Nadine is comprised of four applications: Members, Staff, Admin, and Tablet.

Members is the member facing application. We consider members to be users with active resource allocations. Staff is
the application used by staff members to help with the overall management of the community. Admin is the application
in which only application administrators can access as it has absolute access to data. Tablet is the application used

6 Chapter 2. Indices and tables

http://127.0.0.1:8000/
https://github.com/nadineproject/nadine/issues

Nadine Documentation, Release 1.8.2

for user sign-ins and for the interaction expected at the entrance of a space and greeting a new or returning user of the
space.

2.4.2 Members Application

This application is what members will use to connect with each other, the coworking space staff, and greater commu-
nity.

Note: Much of the information given by members and organizations is designated as either public (viewable by
current members) or private (only viewable by staff and that specific member). This is clearly indicated to members
and they opt in to sharing whatever of that information with which they are comfortable.

In the Members Application there are profiles for both members and organizations/companies. Each have a photo
or logo, URLS they would like others to see, a short bio, and tags. While the listed items are public, privately the
members and organizations can see emergency contacts, billing history, signed documents (such as a membership
agreement), and their user activity.

A member and an organization can edit their profiles as often as they would like. One setting, though, that is set
by application administrator is whether or not members are allowed to upload their own user photos. That setting is
entitled ALLOW_PHOTO_UPLOAD. More information in Changing Application Settings.

Other features of the Members Application are the calendar of events, ability to subscribe and unsubscribe from
mailing lists, Slack invitation (if allowed in Settings), and the general ability to see who the other members and
organizations are and to make a request to connect.

One feature, tags, are interests they can share which are then sortable and searchable by other members and organi-
zations. This allows a space to see how organizations self identify their industries and also what their members are
doing.

The Members Application is laid similarly in the views and the templates.

• connect

• core

• events

• organization

• profile

• tags

2.4.3 Staff Application

The Staff Application allows the staff of a space to best manage memberships and the tasks required to run the space.
It is the application designed for staff to easily track space usage, review billing and deposits, and edit member
information if/when needed.

The navigation of the Staff Application includes:

• Tasks/ToDo

• Member List

• Activity

• Billing

2.4. Nadine Structure 7

Nadine Documentation, Release 1.8.2

• Stats

• Logs

• Lists

• Settings

Tasks/Todo

This section of the Staff Application deals with tasks that staff must complete. Tasks can be assigned to specific staff
members or left available for anyone to complete and mark as such. This is the default home page for a staff member.

Member List

Member List shows all members in a sortable manner and then allows a staff member to edit any person’s information
as needs.

Activity

Activity is for recording any members particular use of the space and to generate reports on past usage and membership
levels.

Billing

It is important to know that Nadine does not store any person’s credit card information. Nadine in its current iteration
uses a USAEpay integration for billing. In this section of the application, staff can track payments, generate reports,
and run the daily billing.

Logs

Logs show device and user logins to the local internet. To know the user, the system remembers devices after a member
has logged into Nadine from that computer. This allows us to better track use of space and to make sure that a member
is using the space per their membership.

Lists

These pages are for the management of whatever mailing lists a space might have and the Slack channel, if a space
has it.

2.4.4 Admin

Like most admin applications, this has absolute access to user and space data. As stated before, though, this does not
include any credit card information. Only application administrators have access to this part of Nadine.

2.4.5 Tablet Application

The Tablet is designed for use on an iPad at the entry of a space as a sort of portal. The user has access to sign in and
see who else is in the space from this. Additionally, a user can sign documents such as a membership agreement.

8 Chapter 2. Indices and tables

Nadine Documentation, Release 1.8.2

2.5 Themes

Nadine’s Member application is designed to be changed to better serve each space. Want to include your logo, company
color scheme, etc? We tried to make that easy for you.

Currently the Member application is styled to be rather generic and includes the Nadine Logo throughout. What logo
is that? That’s the cow on the index page of this documentation. You are welcome to stay with this design but we also
welcome you to get in the sandbox and make the Member application unique to your coworking space.

2.5.1 Creating a Theme

It is easy to create your own theme and implement it with the Member application.

Create a new project with the following doc tree:

THEME_NAME/
- theme_settings.py
- static/
| - css/
| | -members.css
| - img/
| - js/
| - fonts/
- templates/
| - members/
- .gitignore

Static Folder

The static/ folder will contain all of your new styling(css), any particular javascript files you might need, new font
files, and images. Here you can include the style sheets for any new CSS framework you might use and/or your own
stylesheet.

The members.css file will be the most important for your new styling. This is where you can override the stylings
from the default theme.

To completely override the layout of a page, you will need to write that page with DTL and HTML and include that in
the templates/members folder.

Logo

In in the img/ folder, you can include your logos which you will use. If you do not intend to change the HTML then
you will need to include two versions of your logo and save them as logo.png and logo-line.png. The first one to be
used on the homepage jumbotron and the other to be part of the top navigation throughout the app.

Theme Settings

In theme_settings/ you can set the local settings for the application. The settings available include things such as the
social media URLS, permissions for registration and photo uploads, and others.

For example, a theme_settings file for Office Nomads might look like:

2.5. Themes 9

Nadine Documentation, Release 1.8.2

ALLOW_ONLINE_REGISTRATION = False
ALLOW_PHOTO_UPLOAD = False

FACEBOOK_URL = "https://www.facebook.com/OfficeNomads"
TWITTER_URL = 'https://twitter.com/OfficeNomads'
YELP_URL = 'https://www.yelp.com/biz/office-nomads-seattle-2'
INSTAGRAM_URL = 'https://www.instagram.com/officenomads/'

Implementing the Theme

First, copy your new theme folder into the themes/ folder. Then, in the terminal:

$ cd themes
$ ln -s THEME_NAME active

This command tells Nadine to prioritize your theme over the members.css that came with it. Reload the Member App
and see how it all looks!

2.6 Django Templating

Nadine uses Django as our backend framework. With Django comes the awesome power of the Django templates.
The templates are HTML with the Django template language (DTL) and any necessary JavaScript.

For more information on DTL and Django templates, check out the documentation.

2.6.1 Nadine’s Usage of Django Templates

To make the DRY-est html, we have used the templates to manage repeated code. You will notice a base.html in all of
the applications. This is the file which will layout the head, navigation, and footer. From there, each of the pages will
include a version of:

{% extends app_name/base.html %}

In the Staff App, the templates are divided up even more and each of those folders include their own base.html which
extends the staff/base.html and then sets some basic navigation styling and brings in a stylesheet for that section.

Below the ‘extends’ code, there might also be such code as:

{% load static %}

This loading of static or settings or whatever is called is bringing in a variable from the backend to be used.

To maintain our DRY code, there are points in the HTML in which the template ‘includes’ another HTML page. An
example of this would be the date_range_form.html which is repeatedly used in the Staff App with:

{% include "staff/date_range_form.html" %}

Again, for more info on Django templating, please see the documentation.

2.7 Static Files

Per Django documentation, Nadine serves static files by setting a STATIC_URL in the settings file and then loading
the static shortcut then including it in a path like this:

10 Chapter 2. Indices and tables

https://docs.djangoproject.com/en/1.10/topics/templates/
https://docs.djangoproject.com/en/1.10/topics/templates/

Nadine Documentation, Release 1.8.2

{% load static %}

The static folder includes all images Nadine will use, stylesheets, JavaScript files, and fonts. Each application has its
own static folder in which you must include any necessary item to be used in that application.

2.8 Testing

Nadine is written with front-end and back-end tests. You are welcome to run the tests locally. If you do run into any
issues, please enter it as an issue in Github.

2.8.1 Front-End Testing

For Front-En testing, Nadine uses CasperJS which is a ‘navigation scripting & testing utility for the PhantomJS
(WebKit) and SlimerJS (Gecko) headless browsers, written in Javascript.’

To run these tests, you first must have CasperJS installed and make sure that PhantomJS is installed.

$ brew install casperjs
$ phantomjs --version

If you do not have phantomjs, then use brew to install it.

To run all tests:

$./manage.py runserver #make sure you have the server or running it will error out
$ casperjs test frontend-testing/tests --username='YOUR_USERNAME' --password='YOUR_
→˓PASSWORD' --path='/PAGE_TO_TEST/'

To run a singular test, include the filename after tests/ in the path. In particular, to run tests to verify all links return
a status code of 200, we have a test for that. Include a new variable called ‘path’ and either assign it ‘/member/’ or
‘/staff/’.

$./manage.py runserver
$ casperjs test frontend-testing/tests/linktesting.js --username=YOUR_USERNAME --
→˓password=PASSWORD --path='/PAGE_TO_TEST/'

Suggested paths:

• ‘/member/’

• ‘/member/view/’

• ‘/staff/’

• ‘/staff/user/members/’

• ‘/staff/user/detail/USERNAME’

Some of the tests are checking for a lot of information so it might take a minute or so to run.

2.8.2 Back-End Testing

Django is wonderful and includes its own ability to run unit tests. According to the docs, ‘Django’s unit tests use a
Python standard library module: unittest. This module defines tests using a class-based approach.’ For more detailed
information on Django testing then please see the documentation

2.8. Testing 11

https://github.com/nadineproject/nadine/issues
https://docs.djangoproject.com/en/1.10/topics/testing/overview/

Nadine Documentation, Release 1.8.2

To run backend tests, you can be specific or more broad. To run all tests:

$./manage.py test nadine.tests

To run one specific test, like from the room booking test suite:

$./manage.py test nadine.tests.test_room.RoomTestCase.test_available_straddling

2.9 Mailing Lists

In the interest of shipping more quickly, we have made certain assumptions about the interlink mailing lists which may
or may not suit everyone’s needs.

• the reply-to address for mail from a list is the original sender, not the entire list

• attachments are neither saved nor sent to the list, but a removal note is appended to the message

• incoming messages are parsed for a single text message and a single html message (not multiple MIME mes-
sages)

• loops and bounces are silently dropped

• any email sent to a list which is not in a subscriber’s user or membership record is moderated

• the sender of a message receives a copy of the message like any other subscriber

12 Chapter 2. Indices and tables

	License & Copyright
	Indices and tables

